This article was downloaded by: On: *16 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



To cite this Article Sanghavi, Rr, Asthana, Sn, Karir, Js and Singh, Haridwar(2002) 'Combustion and thermal behaviour of ballistically modified eva and estane based RDX-AP propellants', Journal of Energetic Materials, 20: 2, 97 — 134 To link to this Article: DOI: 10.1080/07370650208244816 URL: http://dx.doi.org/10.1080/07370650208244816

### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

### COMBUSTION AND THERMAL BEHAVIOUR OF BALLISTICALLY MODIFIED EVA AND ESTANE BASED RDX-AP PROPELLANTS RR Sanghavi, SN Asthana, JS Karir and Haridwar Singh

High Energy Materials Research Laboratory.

### Pune-411 021 (INDIA)

### ABSTRACT

This paper reports the findings of the combustion and thermal studies on RDX-AP based propellants with ethylene vinyl acetate (EVA) and polyurethane-ester-MDI (Estane) binder systems plasticised with triacetin (TA) and glycidyl azide pre-polymer (GAP). Effect of incorporation of selected ballistic modifiers namely iron oxide, copper chromite, basic lead salicylate + cuprous oxide + carbon black combination and sodium borohydride (adsorbed on aluminium oxide) was also studied during this work. Incorporation of GAP as plasticizer in place of TA led to improvement in F by 36-52 J/g. Closed vessel evaluation results were in close agreement with the theoretically predicted performance. Burn rate enhancement by ballistic modifiers was observed in both acoustic burn rate experiments as well as closed vessel test. A major finding was the realization of pressure index value of the order of 0.65 - 0.68 with copper chromite in the high pressure regions (14 - 200 MPa) which is not reported earlier. DTA and DSC studies indicate that RDX decomposition is the major process during propellant degradation and ballistic modifiers catalyse condensed-phase/near-surface reactions involving GAP.

> Journal of Energetic Materials Vol. 20, 097-134 (2002) Published in 2002 by Dowden, Brodman & Devine, Inc.

Thermoplastic elastomers (TPEs) are basically non-homogeneous polymeric systems in which an elastomeric unit has been polymerized with a thermoplastic unit to produce a co-polymer having a central block of elastomer terminated with thermoplastic blocks. The end result of this molecular construction is a material which has the properties of vulcanised rubber and can be processed in a manner similar to thermoplastics<sup>1</sup>. Basically, TPEs offer the advantages of desired cohesive strength upto moderately high temperature and flexibility even at sub-zero temperatures. The system may be remelted and reprocessed a number of times providing consequent advantages to the formulator like simplified processing and lower production losses<sup>2</sup>. Owing to these typical characteristics, TPEs have potential of use as binder for rocket/gun propellants and explosives<sup>3-6</sup>. Moreover, major advantage of TPEs over chemically cured and crosslinked hydroxy/carboxy terminated polybutadiene binders in current use is the ease in demilitarizing of filled munitions<sup>6</sup>.

During present work, RDX-AP based formulations with TA/GAP plasticized EVA and Estane binder systems were subjected to combustion studies. Effect of inclusion of selected ballistic modifiers was also evaluated. DTA & DSC data on all the systems was generated in the course of this study. An attempt has been made to propose prevailing mechanism for combustion pattern observed on the basis of the thermal and ballistic data generated during this work as well as findings of other researchers.

Propellant formulations evaluated in this study comprised 70 - 60% RDX (~ 5µ), 10-20% AP (~10 µ), 16% TPE binder (EVA/Estane) and 4% plasticizer (TA/GAP). In ballistically modified compositions, iron oxide/copper chromite/basic lead salicylate + cuprous oxide + carbon black combination and sodium borohydride (adsorbed on aluminium oxide) were incorporated at the level of 2 parts (by weight) over and above 100 parts (by weight) of formulation. Solvent technique was adopted to process the formulations<sup>7</sup>. TPEs were solvated by mixing with plasticizer and required quantity of solvent (toluene/acetone) in a sigma blade mixer. RDX was added in installments to the solvated binder matrix. The contents were incorporated for two hours. Subsequently, the mix was dried at 40°C to remove the solvent. Dried crumbs were hot rolled at 60-80°C to obtain extrudable propellant sheets. Computer software (Therm) developed by HEMRL was used to theoretically compute thermochemical parameters<sup>6</sup>. The propellant samples in ribbon form were subjected to combustion in a 100 cc closed bomb at 0.2 g/cc loading density to determine the delivered impetus. Data obtained on closed vessel (CV) firing was acquired using piezoelectric gauge in conjunction with indigenously developed data acquisition system. All the experiments were performed on propellants conditioned at  $30 \pm 2^{\circ}$ C. Strand burn rates were determined in the pressure range of 3.4 -10.8 MPa by combusting strand (6 x 6 x 100 mm) in the nitrogen pressurized steel bomb. Acoustic signals generated by the deflagrating sample were unidirectionally transmitted through the water medium and sensed by the piezo-electric transducer of resonance frequency of 200 kHz. Thermal studies were carried out at a heating rate of 10°C/min on indigenously fabricated Differential Thermal Analyser (DTA) in air and Differential Scanning Calorimeter (DSC) of Perkin Elmer Make in N<sub>2</sub> atmosphere.

**Results & Discussion :** 

### **BALLISTICS**:

### **Closed Vessel Combustion**

The theoretical computation of ballistic parameters revealed that the propellants with 70% RDX and 10% AP combination based on TA plasticised EVA binder give F of the order of 1128 J/g with T<sub>f</sub> 2763 K and those based on Estane binder give F of the order of 1086 J/g with T<sub>f</sub> 2716 K. On increase in AP content to 20% (at the cost of RDX) F increased to the extent of 1136 and 1103 and T<sub>f</sub> to 2869 – 2824 respectively. GAP plasticised formulations exhibited higher F (by 36 – 52 J/g) and T<sub>f</sub> (by 115-119 K) than corresponding TA plasticized formulations. CV firing experiments gave F values in close agreement with the theoretically computed data (Table 1). The pressure burn-rate relationships obtained for various systems are summarized below and depicted in Fig.1-4.

 $r = 0.113 P^{1.06} r = 0.155 P^{0.95} r = 0.133 P^{0.91} r = 0.162 P^{0.90}$ 70% RDX 10% AP 60% RDX 20% AP
TA GAP

### **EVA Based Formulations**

 $r = 0.092 P^{0.98} r = 0.126 P^{0.90}$   $r = 0.105 P^{0.95} r = 0.137 P^{0.90}$  70 % RDX 10% AP 60% RDX 20% AP TA GAP

**Estane Based Formulations** 

As the results obtained for composition based on 60% RDX and 20% AP in EVA binder system were superior to those for other compositions studied, in terms of relatively higher burning rate and lower pressure index, it was selected for ballistic modification. The pressure-burn rate relationships of the ballistically modified systems obtained are given below (Fig.5 & 6):

- $r = 0.183 P^{0.89}$   $r = 0.191 P^{0.82}$ 
  - TA

TA

Fe<sub>2</sub>O<sub>3</sub>

GAP

- $r = 0.191 P^{0.68}$   $r = 0.212 P^{0.65}$ 
  - GAP

### Cu Chromite

 $r = 0.170 P^{0.82}$   $r = 0.177 P^{0.80}$ 

TA GAP

BLS + Cu<sub>2</sub>O + C-black

- $r = 0.175 P^{0.93}$   $r = 0.187 P^{0.90}$ 
  - TA

GAP

### Sodium Borohydride (on Al<sub>2</sub>O<sub>3</sub>)

Among the ballistic modifiers, copper chromite appears to be the most effective while BLS +  $Cu_2O$  + C-black and sodium borohydride (on Al<sub>2</sub>O<sub>3</sub>) appear to be the least effective in enhancing the burn rates. Fe<sub>2</sub>O<sub>3</sub> gives intermediate results. Copper chromite exhibits the best results with respect to pressure index also as revealed by the value of 0.65 - 0.68 for the composition modified by it compared to 0.8 - 0.93 for BLS + Cu<sub>2</sub>O +

C-black,  $Fe_2O_3$  and sodium borohydride on  $(Al_2O_3)$ . Such low index values are not reported earlier in the high pressure regions (14 - 200 MPa). As expected, inclusion of ballistic modifier led to marginal reduction in F (Table 2).

### Acoustic Burn Rate

TA plasticised EVA binder based formulations with 70 - 60% RDX and 10 - 20% AP exhibited stable combustion in the pressure range studied (8.8 - 10.8 MPa) with the burning rate of  $\sim 6 - 8$  mm/s, while corresponding formulations with Estane binder did not exhibit combustion in this pressure range. GAP plasticised Estane binder based systems with 10 - 20% AP revealed stable combustion in the pressure range of 6.8 - 10.8 MPa like EVA based formulation containing 10% AP albeit with relatively lower burning rates (5 - 7 mm/s) than latter (8 - 11.5 mm/s). In case of GAP plasticised EVA based formulation with 20% AP, pressure limit of stable combustion was extended to the level of 3.4 MPa (Table 3). These results further confirm overall superior burning characteristics of EVA binder based formulation with 60% RDX and 20% AP. The pressure-burn rate relationships bring out lower pressure index value of GAP plasticised formulations (Fig. 7 & 8) in the range of 3.4 to 10.8 MPa as observed during closed vessel firings (in the pressure range of 14 to 200 MPa).

Incorporation of ballistic modifiers namely copper chromite, BLS +  $Cu_2O$  + C-black and sodium borohydride (on  $Al_2O_3$ ) in TA plasticized formulations led to marginal increase in burning rates (4 – 6%). Copper chromite was relatively more effective (8-10%). In case of GAP plasticised formulation also burning rate enhancement was marginal (2-6%) with BLS +  $Cu_2O$  + C-black and sodium borohydride (on Al<sub>2</sub>O<sub>3</sub>) while addition of copper chromite resulted in burning rate increase to the order of 30 – 60% in the lower pressure region (3.4 – 4.9 MPa). Fe<sub>2</sub>O<sub>3</sub> gave intermediate results (Table 4). As in close vessel test conducted in high pressure region, copper chromite gave the best results in terms of pressure-index (0.32 – 0.45) during acoustic burning tests in the pressure range of 3.4 – 10.8 MPa (Fig.9 & 10).

### DSC

As reported earlier by the authors<sup>9</sup>, RDX-EVA and Estane based formulations with TA as plasticizer give endotherm at 196-200°C immediately followed by an exotherm at 241-244°C with  $\Delta$ H of 1753-1757 J/g. Incorporation of 10-20% AP in TA plasticized EVA and Estane formulations brought down Tm of exotherm by about 10-30 °C with increase in  $\Delta$ H by ~500 - 900 J/g. Replacement of TA by GAP resulted in increase in Tm by 20°C and decrease in  $\Delta$ H by 400 - 800 J/g in case of EVA based formulations while it did not have any effect on Estane based formulations (Table 5 & Fig.11-22). Inclusion of Fe<sub>2</sub>O<sub>3</sub>, Cu chromite, BLS + Cu<sub>2</sub>O + C-black, sodium borohydride (on Al<sub>2</sub>O<sub>3</sub>) as ballistic modifiers in the selected TA plasticizer based formulations (with 60% RDX and 20% AP) led to increase in Tm and decrease in  $\Delta$ H of exotherm, while in case of GAP plasticised formulation decrease in Tm of exotherm without much effect on  $\Delta$ H was observed (Table 6, Fig.23-32).

In order to generate additional information, ballistically modified propellants were subjected to TG (Table 7 and Fig.33-48). The TA plasticised formulation with 60% RDX and 20% AP gave weight loss of 90% in temperature range 180 - 210°C. Subsequent 10% weight loss was observed in the temperature range of 210 - 600°C. Ballistic modifiers based formulations also revealed more or less similar weight loss pattern. In case of GAP plasticized formulations 84% weight loss was observed in the temperature range of 180 - 240°C and subsequently 16% weight loss occurred in the temperature range of 240 - 600°C. Fe<sub>2</sub>O<sub>3</sub> based formulations exhibited 85% weight loss in the temperature range 180 - 230°C. NaBH<sub>4</sub> (on Al<sub>2</sub>O<sub>3</sub>) and BLS + Cu<sub>2</sub>O + C-black modified formulation exhibited 85% weight loss in the temperature range 180 - 210°C. Copper chromite based formulations revealed relatively higher weight loss (90%) in the same temperature region.

### **Mechanistic Approach**

Authors observed during recent work<sup>9</sup> that, EVA and Estane based RDX formulations exhibit an endotherm at about 205°C and an exotherm at 225°C. These temperatures are close to melting and decomposition temperatures of RDX respectively, suggesting that RDX plays a major role in the decomposition process as reported by various researchers<sup>10</sup>. AP based TA/GAP plasticized formulations exhibited a drop in Tm and an increase in heat release suggesting that AP catalyses condensed phase reactions. These results are in line with those reported by other researchers<sup>11</sup> and are attributed to the intensified oxidative reactions on/near surface due to positive oxygen balance of AP.

As regards ballistically modified TA plasticized compositions, heat evolved in DSC was less and Tm was relatively higher compared to those for corresponding unmodified compositions. Much lower  $\Delta H$  for Fe<sub>2</sub>O<sub>3</sub> based formulation may be an

outcome of the need to heat it upto ~1000°C to form the proposed active species CC ~ Fe<sub>2</sub>O<sub>2</sub><sup>12.13</sup>. Although BLS and Cu2O also need to be heated to 700 - 800°C to obtain effective catalytic species<sup>14</sup>, it is widely reported that carbon black functions as flame holder and alongwith lead salt catalyzes interaction between NO/NO2 and carbonaceous species near the surface leading to pronounced heat feed back to the condensed phase<sup>15</sup>. Copper chromite is proposed to undergo exothermic redox reactions at the propellant surface<sup>16</sup>. Boron hydrides act as fuel producing boron and hydrogen which readily undergo exothermic oxidation. Boron is also reported to undergo nitridation<sup>17</sup>. It may be suggested on the basis of the observations that the incorporation of ballistic modifiers did not influence the AH in DSC and weight loss pattern in TG despite burn rate enhancement that the site of catalytic action of ballistic modifiers is mainly gas phase as generally reported for AP based compositions<sup>18</sup>. Decrease in Tm in case of GAP plasticised formulations (unlike for TA plastisized compositions) on incorporation of ballistic modifiers suggests that these modifiers catalyse interaction between decomposition products of GAP and oxidizer decomposition species in the condensed phase as suggested by Oyumi etal<sup>19</sup> in case of AP - 3,3'Bis Azido Methyl Oxetane (BAMO) / Nitrato Methyl 3 - Methyl Oxetane (NMMO) propellant. Weight loss patterns observed in TG further support these reasoning.

### **CONCLUSION:**

Inclusion of GAP results in an increase in energetics as well as burn rates and reduction in pressure index. EVA based formulations exhibit superior combustion behaviour. Inclusion of ballistic modifiers leads to further improvement in ballistics in terms of enhanced burn rates. The best results are obtained with copper chromite. It was found effective not only in lower pressure region i.e. 3.4 - 10.8 MPa but also in higher pressure region i.e. 14 - 200 MPa. Thermal and ballistic data bring out that the site of action of ballistic modifiers is basically near-surface gas phase reactions, however they appear to catalyse the condensed phase decomposition reactions involving GAP. This study establishes that TPEs have potential for application as binder for not only futuristic gun propellants but also for rocket propellants (Table 8).

### **REFERENCES:**

- 1. T.Franta. "Elastomers and Rubber Compounding Materials", Elsevier, New York (1989).
- S.T.Peters. Jt.Int.Symposium on "Compatibility of Plastics and Other Materials with Explosives, Propellants, Pyrotechnics and Processing of Explosives. Propellants and Ingredients", Virginia, 1-6 (1989).
- 3. S.Wise and J.J.Rocchio, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, 305-320.
- W.Klohn and A.Rassinfosse, Joint Symposium on "Compatibility of Plastics and Other Materials with Explosives, Propellants and Pyrotechnics and Processing of Propellants. Explosives and Ingredients", Fraunhofer Institute for Treib and Explosivstoffe, Pfinztal, AD-A151298, Arizona, 149-160 (1982).
- C.J.Leach, S.B.Langston and Akhavan, Fraunhofer Institut for Chemical Technology, Proceedings of 24<sup>th</sup> ICT Conference, Karlsruhe, 16/1 - 16/10, (1994).
- R.A.Biddle and R.L.Willer, Proceedings of International Symposium on Compatibility of Plastics and Other Materials with Explosives, Propellants and Pyrotechnics and Ingredients, Virginia Beach, 24 (1989).
- I.J.Dagley, H.J.Spencer, C.N.Lovey and R.P.Parker, MRL Technical Report, MRL-TR-89-33, Australia (1989).
- 8. Rao KP, Defence Science Journal, 29(1), 21-20, (1979).
- R.R.Sanghavi, S.N.Asthana, J.S.Karir and Haridwar Singh, Journal of Energetic Materials, 19(1), 41, (2000).
- 10. Y Oyumi, Propellants, Explosives, Pyrotechnics, Vol.13, 42-47 (1988).
- N.Kubota and T.Masamoto, 16<sup>th</sup> Symposium (Int) on Combustion, Pittsburgh, Pensylvania, 1201-09 (1976).
- K.Kishore and V Gayathri, "Chemistry of Ignition and Combustion of Ammonium Perchlorate Based Propellants", Fundamentals of Solid Propellant Combustion, Edited by KK Kuo and Summerfield, Progress in Aeronautics and Astronautics, AIAA, 90, 53-119 (1984).
- 13. CV Pittman, AIAA Journal, Vol.7, 328-34 (1969).

- G Lengelle, A Bizot, J Duterque, JF Trubert, Fundamentals of Solid Propellants Combustion. Edited by KK Kuo, M Summerfield. Progress in Aeronautics and Astronautics, AIAA, 90, 361-407 (1984).
- 15. C.Youfang, Propellants, Explosives, Pyrotechnics. 12, 209-219 (1987).
- 16. TL Boggs, "The Thermal Behaviour of Cyclotrimethylene Trinitramine (RDX) and cyclotettramethylene tetranitramine (HMX)", Fundamentals of Solid Propellants Combustion, Edited by KK Kuo and Summerfield. Progress in Aeronautics and Astronautics, AIAA, 90, 121-175 (1984).
- 17. JT Barnes, EB Fischer, W.Hollar, K White and A.Lubaaz, US Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, (1987).
- CN Divekar, SN Asthana, H Singh, Journal of Propulsion and Power, 17, 58 64 (2001).
- 19. Y Oyumi, Propellants, Explosives, Pyrotechnics, Vol.20, 150-155 (1995).

TABLE-1: THEORETICAL AND CLOSED VESSEL RESULTS OF RDX-AP PROPELLANTS

|                             |        | Esta   | ne      |        |        | EV     | A      |        |
|-----------------------------|--------|--------|---------|--------|--------|--------|--------|--------|
|                             | L      | A      | Ö       | AP     | TA     |        | GAP    |        |
| PARAMETERS                  | 10% AP | 20% AP | 10% AP  | 20% AP | 10% AP | 20% AP | 10% AP | 20% AP |
| Theoretical                 |        |        |         |        |        |        |        |        |
| Flame Temp, K               | 2716   | 2824   | 2835    | 2942   | 2763   | 2869   | 2880   | 2984   |
| Force Constant, J/g         | 1086   | 1103   | 1138    | 1139   | 1128   | 1136   | 1173   | 1181   |
| Pmax, MPa                   | 218    | 220    | 227     | 220    | 226    | 228    | 235    | 237    |
| Mol.Wt (products),<br>g/mol | 20.8   | 21.4   | 20.8    | 21.5   | 20.3   | 20.9   | 20.4   | 21.0   |
| CV Firing                   |        |        |         |        |        |        |        |        |
| Force Constant, J/g         | 1072   | 1087   | 1118    | 1122   | 1114   | 1123   | 1160   | 1169   |
| Pmax, MPa                   | 245    | 260    | 257     | 264    | 228    | 257    | 247    | 274    |
| ß, cm/s/MPa                 | 0.092  | 0.126  | 0.105   | 0.137  | 0.133  | 0.155  | 0.133  | 0.162  |
| ۵                           | 0.98   | 0.90   | 0.95    | 0.9    | 1.06   | 0.95   | 16.0   | 0.00   |
| n, mole/g                   | 0.0481 | 0.0466 | 0.04800 | 0.0465 | 0.0491 | 0.0477 | 0.0490 | 0.0476 |

| SULTS OF BALLISTICALLY MODIFIED 60% RDX, 20% AP PROPELLANTS WITH EVA | BINDER |
|----------------------------------------------------------------------|--------|
| F BAL                                                                |        |
| RESULTS O                                                            |        |
| ESSEL                                                                |        |
| <b>CLOSED V</b>                                                      |        |
| ABLE-2:                                                              |        |

|                        |       |                                |                     |                                | E        | A     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |          |
|------------------------|-------|--------------------------------|---------------------|--------------------------------|----------|-------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|
|                        |       |                                | TA                  |                                |          |       |                                | GAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |          |
|                        | Nil   | Fe <sub>2</sub> O <sub>3</sub> | BLS +               | NaBH4 on                       | Ū        | Nii   | Fe <sub>2</sub> O <sub>3</sub> | BLS +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NaBH4                 | IJ       |
| -                      | BM    |                                | Cu <sub>2</sub> 0.+ | Al <sub>2</sub> O <sub>3</sub> | Chromite | BM    |                                | $Cu_2O + Cu_2O + Cu_2$ | on Al <sub>2</sub> O3 | Chromite |
| r'arameter             |       |                                | C-black             |                                |          |       |                                | C-DIACK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |          |
| Force<br>constant, J/g | 1123  | 1102                           | 6601                | 1092                           | 6011     | 1169  | 1110                           | 1106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6601                  | 1115     |
| Pmax, MPa              | 257   | 250                            | 249                 | 246                            | 252      | 274   | 259                            | 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 251                   | 263      |
| β, cm/s/MPa            | 0.155 | 0.183                          | 0.170               | 0.175                          | 0.191    | 0.162 | 0.191                          | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.187                 | 0.212    |
| Ø                      | 0.95  | 0.89                           | 0.82                | 0.93                           | 0.68     | 0.90  | 0.82                           | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.90                  | 0.65     |

| 2011    |
|---------|
| January |
| 16      |
| 13:49   |
| At:     |
| nloaded |
| DOW     |

# TABLE-3 : STRAND BURN RATES (ACOUSTIC) OF RDX-AP PROPELLANTS

|                      |                | Es             | lane            |                 |        | EV     | A      |        |
|----------------------|----------------|----------------|-----------------|-----------------|--------|--------|--------|--------|
|                      | L              | A              | <sup>2</sup> 0  | P.              | T      | A      | 07     | Р      |
|                      | 10% AP         | 20% AP         | 10% AP          | 20% AP          | 10% AP | 20% AP | 10% AP | 20% AP |
| Pressure, MPa        |                |                |                 | Burn rate,      | mm/s   |        |        |        |
| 3.4                  | -              |                | -               | ſ               | ,      | ı      | '      | 5.2    |
| 4.9                  | ۰<br>-         | ,              | ı               | r               | ,      | ,      | ,      | 7.2    |
| 6.8                  | ,              | '              | 4.8             | 5.4             | I      | I      | 8      | 8.4    |
| 8.8                  | ,              | ,              | 5.7             | 6.3             | 6.0    | 6.3    | 10.8   | 11.8   |
| 10.8                 | ı              | ,              | 6.6             | 7.2             | 7.5    | 7.9    | 11.4   | 12.3   |
| Pressure exponent, n | ,              | •              | 0.69            | 0.62            | 11.1   | -      | 0.78   | 0.76   |
|                      |                |                |                 |                 |        |        |        |        |
| RDX Based Compositic | on did not und | ergo combustio | on in the acous | tic strand burn | ÷      |        |        |        |

TABLE-4 : STRAND BURN RATES (ACOUSTIC) OF BALLISTICALLY MODIFIED AP/RDX/EVA PROPELLANTS

| Burn rate,                 |        |                                |                                         |                                            | EV             | A'     |                                |                                         |                                            |                |
|----------------------------|--------|--------------------------------|-----------------------------------------|--------------------------------------------|----------------|--------|--------------------------------|-----------------------------------------|--------------------------------------------|----------------|
| mm/s at                    |        |                                | TA                                      |                                            |                |        |                                | GAP                                     |                                            |                |
| pressure,<br>MPa           | 20% AP | Fe <sub>2</sub> O <sub>3</sub> | BLS +<br>Cu <sub>2</sub> O +<br>C-black | NaBH,<br>on Al <sub>2</sub> O <sub>3</sub> | Cu<br>Chromite | 20% AP | Fe <sub>1</sub> O <sub>3</sub> | BLS +<br>Cu <sub>2</sub> O +<br>C-black | NaBH4<br>on Al <sub>2</sub> O <sub>3</sub> | Cu<br>Chromite |
| 3.4                        |        | ,                              | 5.4                                     | 5.4                                        | 5.6            | 5.2    | 6.0                            | 5.5                                     | 5.4                                        | 8.1            |
| 4.9                        | ,      |                                | 5.9                                     | 5.8                                        | 6.1            | 7.2    | 7.7                            | <b>7.4</b>                              | 7.5                                        | 9.0            |
| 6.8                        | •      | 6.2                            | 6.3                                     | 6.3                                        | 6.5            | 8.4    | 8.9                            | 8.7                                     | 8.7                                        | 9.8            |
| 80.                        | 6.4    | 6.5                            | 6.6                                     | 6.5                                        | 6.8            | 11.8   | 12.2                           | 12                                      | 12.1                                       | 12.7           |
| 10.8                       | 7.9    | 8.2                            | 8.3                                     | 8.3                                        | 8.5            | 12.3   | 12.8                           | 12.5                                    | 12.6                                       | 13.3           |
| Pressure<br>exponent,<br>n | 1.0    | 0.60                           | 0.35                                    | 0.32                                       | 0.32           | 0.77   | 0.68                           | 0.73                                    | 0.75                                       | 0.45           |

| 2011     |
|----------|
| January  |
| 16       |
| 13:49    |
| At:      |
| vnloaded |
| ğ        |

|            |     | T.  | _   |               |         |              |         |
|------------|-----|-----|-----|---------------|---------|--------------|---------|
|            |     | 20% | AP  | 195           | 68      | 234          | 2450    |
|            | GAP | 10% | AP  | 961           | 93      | 234          | 2432    |
| 2          |     | N:I | AP  | 202           | 87      | 240          | 1648    |
| Estar      |     | 20% | AP  | 961           | 57      | 229          | 2483    |
|            | TA  | 10% | AP  | 197           | 116     | 231          | 2416    |
|            |     | lin | AP  | 203           | 6       | 241          | 1753    |
|            |     | 20% | AP  | 196           | 58      | 224          | 1837    |
|            | GAP | 10% | ٩P  | 661           | 89      | 226          | 1830    |
| /A         |     | Nil | AP  | 206           | 173     | 239          | 1634    |
| EV         |     | 20% | AP  | 201           | 189     | 208          | 2667    |
|            | TA  | 10% | AP. | 200           | 257     | 210          | 2247    |
|            |     | Nil | AP  | 206           | 110     | 244          | 1757    |
| Parameters |     |     |     | Endotherm, °C | ΔH, H/g | Exotherm, °C | ΔH, J/g |

## TABLE-6: DSC OF BALLISTIC MODIFIED AP/RDX/EVA PROPELLANTS

|          |           |                                |                     |                                   | E        | 'A        |                                |         |                                   |          |
|----------|-----------|--------------------------------|---------------------|-----------------------------------|----------|-----------|--------------------------------|---------|-----------------------------------|----------|
|          |           |                                | TA                  |                                   |          |           |                                | GAP     |                                   |          |
| _        | 0/M       | Fe <sub>2</sub> O <sub>3</sub> | BLS +               | NaBH.                             | ĩ        | 0/M       | Fc <sub>2</sub> O <sub>3</sub> | BLS +   | NaBH,                             | Ū        |
|          | Ballistic |                                | Cu <sub>2</sub> 0 + | on Al <sub>2</sub> O <sub>3</sub> | Chromite | Ballistic |                                | Cu20 +  | on Al <sub>2</sub> O <sub>3</sub> | Chromite |
|          | Modifier  |                                | C-black             |                                   |          | Modifier  |                                | C-black |                                   |          |
| Endo, °C | 861       | 200                            | 201                 | 200                               | 200      | 197       | 202                            | 199     | 201                               | 200      |
| ΔH, J/g  | 57        | 100                            | 443                 | 189                               | 250      | 68        | 235                            | 112     | 68                                | 107      |
| Exo, °   | 208       | 216                            | 214                 | 223                               | 212      | 224       | 216                            | 218     | 217                               | 213      |
| ΔH, J/g  | 2667      | 1580                           | 2474                | 2361                              | 2027     | 1837      | 1860                           | 1844    | 1863                              | 1839     |
|          |           |                                |                     |                                   |          |           |                                |         |                                   |          |

114

| ų,                                       |  |
|------------------------------------------|--|
| -                                        |  |
| Z                                        |  |
|                                          |  |
| -                                        |  |
| _                                        |  |
|                                          |  |
| 5                                        |  |
| 17                                       |  |
|                                          |  |
| 1                                        |  |
| <u> </u>                                 |  |
| ~                                        |  |
| •                                        |  |
|                                          |  |
| -                                        |  |
| ~                                        |  |
| ~                                        |  |
| ( <b>-</b> )                             |  |
| 5                                        |  |
| ~                                        |  |
| ~                                        |  |
|                                          |  |
| ~                                        |  |
| 5                                        |  |
| <u> </u>                                 |  |
| -                                        |  |
| -                                        |  |
| -                                        |  |
| <u></u>                                  |  |
| 61                                       |  |
| =                                        |  |
| τ <u>τ</u> .                             |  |
| _                                        |  |
| ~                                        |  |
| -                                        |  |
|                                          |  |
| _                                        |  |
| $\simeq$                                 |  |
| ž                                        |  |
| ž                                        |  |
| ХW                                       |  |
| JM Y                                     |  |
| LY MC                                    |  |
| LLY MC                                   |  |
| <b>NLLY MC</b>                           |  |
| ALLY MC                                  |  |
| CALLY MO                                 |  |
| ICALLY MO                                |  |
| TICALLY MO                               |  |
| STICALLY MO                              |  |
| <b>ISTICALLY MG</b>                      |  |
| LISTICALLY MC                            |  |
| <b>TISTICALLY MG</b>                     |  |
| LLISTICALLY MG                           |  |
| ALLISTICALLY MG                          |  |
| <b>MULLISTICALLY MO</b>                  |  |
| <b>BALLISTICALLY MG</b>                  |  |
| F BALLISTICALLY MO                       |  |
| <b>JF BALLISTICALLY MC</b>               |  |
| <b>OF BALLISTICALLY MG</b>               |  |
| <b>OF BALLISTICALLY MG</b>               |  |
| A OF BALLISTICALLY MO                    |  |
| <b>3A OF BALLISTICALLY MO</b>            |  |
| GA OF BALLISTICALLY MC                   |  |
| TGA OF BALLISTICALLY MO                  |  |
| : TGA OF BALLISTICALLY MO                |  |
| <b>': TGA OF BALLISTICALLY MG</b>        |  |
| 7 : TGA OF BALLISTICALLY MG              |  |
| 2-7 : TGA OF BALLISTICALLY MO            |  |
| E-7 : TGA OF BALLISTICALLY MO            |  |
| LE-7 : TGA OF BALLISTICALLY MO           |  |
| BLE-7 : TGA OF BALLISTICALLY MO          |  |
| <b>BLE-7 : TGA OF BALLISTICALLY MC</b>   |  |
| ABLE-7 : TGA OF BALLISTICALLY MO         |  |
| <b>TABLE-7 : TGA OF BALLISTICALLY MO</b> |  |

| EVA | GAP | n Cu Chromite Nil BM Fe <sub>2</sub> O <sub>3</sub> BLS + Cu <sub>2</sub> O + NaBH <sub>4</sub> on Cu Chromite<br>C-black Al <sub>2</sub> O | L Temp. WL Temp. WL Temp. WL Temp. WL Temp. WL Temp. WL | <u>30 190-210 90 180-240 84 180-230 85 180-210 85 180-210 85 180-210 90</u> | 0 210-600 10 240-600 16 230-600 .15 210-600 15 210-600 15 210-600 10 |
|-----|-----|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|
|     |     | Fe <sub>2</sub> 0,                                                                                                                          | Temp. WL                                                                                    | 180-230 85                                                                  | 230-600 .15                                                          |
| SVA |     | Nii BM                                                                                                                                      | Temp. WL<br>°C %                                                                            | 180-240 84                                                                  | 240-600 16                                                           |
| E   |     | Cu Chromite                                                                                                                                 | Temp. WL                                                                                    | 190-210 90                                                                  | 210-600 10                                                           |
|     |     | NaBH4 on<br>Al <sub>2</sub> O,                                                                                                              | Temp. WL<br>•ر %                                                                            | 180-210 90                                                                  | 210-600 10                                                           |
|     | ΤA  | BLS + Cu <sub>2</sub> O<br>+ C-black                                                                                                        | Temp. WL<br>°۲                                                                              | 190-230 90                                                                  | 230-600 10                                                           |
|     |     | Fe <sub>2</sub> O <sub>3</sub>                                                                                                              | Temp. WL<br>•ر                                                                              | 180-210 90                                                                  | 210-600 10                                                           |
|     |     | Nil BM                                                                                                                                      | ر المسلم ML                                                                                 | 80-210 90                                                                   | 01 009-013                                                           |

WL – Weight loss BM – Ballistic modifier

### TABLE 8 : PROMISING ROCKET PROPELLANT COMPOSITION

| Composition                            | Isp. S | Force constant<br>(F). J/g |
|----------------------------------------|--------|----------------------------|
| 65% AP + 20% AI + 12% EVA + 3% TA      | 261    | 1160                       |
| 65% AP + 20% AI + 12% EVA + 3% GAP     | 263    | 1175                       |
| 65% AP + 20% AI + 12% Estane + 3% TA   | 258    | 1128                       |
| 65% AP + 20% AI + 12% Estane + 3% GAP  | 260    | 1144                       |
| 65% RDX + 20% Al + 12% EVA + 3% TA     | 254    | 1057                       |
| 65% RDX + 20% Al + 12% EVA + 3% GAP    | 256    | 1067                       |
| 65% RDX + 20% AI + 12% Estane + 3% TA  | 252    | 1033                       |
| 65% RDX + 20% AI + 12% Estane + 3% GAP | 253    | 1044                       |























DSC PROFILES OF RDX/AP/EVA-GAP BASED PROPELLANTS



127



### DSC PROFILES OF RDX/AP/ESTANE-GAP BASED PROPELLANTS



128





129





130



TGA PROFILES OF RDX/AP/EVA-GAP BASED PROPELLANTS



131



TGA PROFILES OF RDX/AP/ESTANE - GAP BASED PROPELLANTS



132





133



TGA PROFILES OF BALLISTICALLY MODIFIED AP/RDX/EVA-GAP BASED PROPELLANTS